

Felix Gokmen

Built and Created a CI/CD pipeline to Deploy Applications on Kubernetes Cluster by using helm and
Jenkinsfile.
Used AWS and created 4 instances.
Two instance for worknodes
One instance for master nodes
One instance for Jenkins and Kubernetes – helm to test and run

1-First create ec2 virtual machine. I have chosen AWS as centos
 Created one for master node
 Created for nodeslave with two instances

2- Change the host name for each VM

3- Master VM updated with apt and created docker installation

👉. https://docs.docker.com/engine/install/centos/

3-The cluster nodes joined to master nodes.

☑ Pods are running

4- Created server linux AWS and made the installation properly for Jenkins

5- Helm created inside the Jenkins.

6- Communication successful from Jenkins server and Pods are running on master nodes where I create in
Jenkins servers

7- Here is my instance on AWS console.

8-Helm version on Jenkins Client and Server
n Client is Jenkins’s server
n Server is for Master server

9- Created Jenkinfile for continuous Integration of my existing portfolio web site.
n Docker credential entered and pushed by Jenkins pipline
n Git repostiry cloned to Jenkins pipline.

10-Mater server – created imagePullScret which I created docker image as private to pull.
n kubectl create secret docker dcoker-registry regcred --docker-server=hub.docker.com --docker-

username=felixgokmen --docker-password=

11-Deploying my website -NodejsAPP- on Kubernetes Cluster with Jenkinsfile by using HELM.

n Deployment screenshots

12- There is now pods available now on master service and server instance

13- Pipeline created for pulling docker image and using helm chart in gitgub.

n Screenshots value.yaml in github

n Deployment file with using value.yaml

n Jenkins server helm list now shows

n Master server

13- After all configuration done - run it on Jenkins server

n Console Output is ;

n Helm list in Jenkins server

n Pods in master server

n Pods information

n Loadbalancer created

n Checking with my nodeslave server public ip that created webapp with port number I assigned.

http://35.183.198.151:30100

14- J The website is reachable now.

15- Cheking my Jenkins server for files

👊 Lets build Integrating GitHub Webhooks with Jenkins to automate unit and integration test after GitHub
events for CI/CD

👉 To connect my Jenkins server with my Webhook, i will first need to create an API Token to authenticate
from the version control provider (Github in this case). To do so, we need to click on our account and then on
the configure option.

👉 Click on Add new Token, write a name for it and then press Generate. You need to store this Token in a
safe place because there is no way to recover it in the future unless creating a new one.

👉 To create GitHub Webhook, i need to open our repository and click on settings. Go to github repository
and click setting > webhooks > add webhoks .Here is the configuration below picture.

👉 Inside the Payload URL text box, you need to write the direction to you Jenkins Server, plus: /github-
webhook/. If you created a ngrok account, it'd be obtained at the end of section one. The payload must have
both / to work, otherwise it'll throw some error. Inside the Secret box, i'll paste the Jenkins API Token which
you can see above picture. Finally, click on: Let me select individual elements to choose the desired webhook
events for our needs to trigger Jenkins.

☑Once created the webhook, it'll look like the following image.

👉 Since early 2021 GitHub restricts API user authentication to work only with a token or private ssh key.
There is no longer possible to authenticate using you user and password, and such is the case working with
Jenkins.

To create a token to be authenticated from Jenkins, go to your GitHub profile, then click on Settings,
Developer Settings, Personal access tokens -- see picture below.

🟡 I give it a name (‘’Jenkin-server-aws	“) plus checking the two boxes: repo
and user, finally click on Generate Token.

👉 Once the token has been generated, it'll look like the following. Again, these tokens are meant to be
kept in a safe place, there is no way to recover them once lost unless creating a new one.

👉 You need first to have the GitHub plugin installed on Jenkins; if you installed all the recommended
plugins at Jenkins installation, it should be there) click on Add GitHub Server, GitHub Server
 ✔Inside the credentials section click on add, Jenkins.

👉 Pushing any commit to our GitHub repository and triggering the build on Jenkins J easy-peasy

👉 Next step is shot down your EC2 instances.🤣

Note: The AWS Free Tier provides to explore and try out AWS services free of charge up to specified limits for
each service for 1 year. Since I use free tier ,it charged me almost 5$.It depends of what service you are using
✔I used my instance almost 2days.

